Acquired and genetic channelopathies: in vivo assessment of axonal excitability.
نویسندگان
چکیده
Neuronal or axonal ion channel function can be impaired or altered in a number of disorders, such as acquired (autoantibody-mediated, toxic, and metabolic) and genetic channelopathies, and even neurodegenerative (motor neuron disease) or inflammatory diseases (multiple sclerosis, immune-mediated neuropathies). When specific channels are affected, axonal/neuronal excitability primarily alters according to original function of the corresponding channels. Separately, in the 1990s, axonal excitability testing was developed to assess ion channel function, membrane potential, and passive membrane properties non-invasively in human subjects. Using this technique, numerous papers on altered axonal excitability in a variety of disorders have been published since 2000. In a recent issue of Experimental Neurology, Park et al. demonstrated changes in peripheral axonal excitability in limbic encephalitis and acquired neuromyotonia with anti-voltage gated potassium channel antibodies. Unexpectedly, the results were not consistent with those caused by simple potassium channel blockade, suggesting that multiple other factors contribute to altered axonal excitability. In contrast it was reported that patients with episodic ataxia type 1 (genetic channelopathy with mutation of Kv1.1 channel gene) show prominent excitability changes exactly compatible with fast potassium channel blockade. This commentary aims to highlight findings of this study in a broader context, and provides possible explanations for the discrepancy of patterns of axonal excitability changes in acquired and genetic potassium channelopathies.
منابع مشابه
In vivo impact of presynaptic calcium channel dysfunction on motor axons in episodic ataxia type 2.
Ion channel dysfunction causes a range of neurological disorders by altering transmembrane ion fluxes, neuronal or muscle excitability, and neurotransmitter release. Genetic neuronal channelopathies affecting peripheral axons provide a unique opportunity to examine the impact of dysfunction of a single channel subtype in detail in vivo. Episodic ataxia type 2 is caused by mutations in CACNA1A, ...
متن کاملAcquired dendritic channelopathy in temporal lobe epilepsy.
Inherited channelopathies are at the origin of many neurological disorders. Here we report a form of channelopathy that is acquired in experimental temporal lobe epilepsy (TLE), the most common form of epilepsy in adults. The excitability of CA1 pyramidal neuron dendrites was increased in TLE because of decreased availability of A-type potassium ion channels due to transcriptional (loss of chan...
متن کاملPotassium Channelopathies of Epilepsy
Channelopathies are inherited genetic changes in ion channel genes that generate a disease. Given the pivotal role of voltage-dependent potassium channels in moderating neuronal excitability, it is not surprising that these channels are well represented among the channelopathies contributing to epilepsy. Voltage-dependent potassium channels are regarded as the “initial responders” that shape an...
متن کاملOp-brai150386 380..391
Ion channel dysfunction causes a range of neurological disorders by altering transmembrane ion fluxes, neuronal or muscle excitability, and neurotransmitter release. Genetic neuronal channelopathies affecting peripheral axons provide a unique opportunity to examine the impact of dysfunction of a single channel subtype in detail in vivo. Episodic ataxia type 2 is caused by mutations in CACNA1A, ...
متن کاملOxaliplatin-induced neurotoxicity: changes in axonal excitability precede development of neuropathy.
Administration of oxaliplatin, a platinum-based chemotherapy used extensively in the treatment of colorectal cancer, is complicated by prominent dose-limiting neurotoxicity. Acute neurotoxicity develops following oxaliplatin infusion and resolves within days, while chronic neuropathy develops progressively with higher cumulative doses. To investigate the pathophysiology of oxaliplatin-induced n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental neurology
دوره 263 شماره
صفحات -
تاریخ انتشار 2015